Fast Convergence of Routing Games with Splittable Flows

نویسنده

  • George B. Mertzios
چکیده

In this paper we investigate the splittable routing game in a seriesparallel network with two selfish players. Every player wishes to route optimally, i.e. at minimum cost, an individual flow demand from the source to the destination, giving rise to a non-cooperative game. We allow a player to split his flow along any number of paths. One of the fundamental questions in this model is the convergence of the best response dynamics to a Nash equilibrium, as well as the time of convergence. We prove that this game converges indeed to a Nash equilibrium in a logarithmic number of steps. Our results hold for increasing and convex player-specific latency functions. Finally, we prove that our analysis on the convergence time is tight for affine latency functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Routing (Un-) Splittable Flow in Games with Player-Specific Linear Latency Functions

In this work we study weighted network congestion games with playerspecific latency functions where selfish players wish to route their traffic through a shared network. We consider both the case of splittable and unsplittable traffic. Our main findings are as follows: – For routing games on parallel links with linear latency functions without a constant term we introduce two new potential func...

متن کامل

The Price of Collusion in Series-Parallel Networks

We study the quality of equilibrium in atomic splittable routing games. We show that in single-source single-sink games on seriesparallel graphs, the price of collusion — the ratio of the total delay of atomic Nash equilibrium to the Wardrop equilibrium — is at most 1. This proves that the existing bounds on the price of anarchy for Wardrop equilibria carry over to atomic splittable routing gam...

متن کامل

Approximation and Complexity of k-Splittable Flows

Given a graph with a source and a sink node, the NP–hard maximum k–splittable flow (MkSF) problem is to find a flow of maximum value with a flow decomposition using at most k paths [6]. The multicommodity variant of this problem is a natural generalization of disjoint paths and unsplittable flow problems. Constructing a k–splittable flow requires two interdepending decisions. One has to decide ...

متن کامل

Two-terminal routing games with unknown active players

We analyze 2-terminal routing games with linear cost functions and with unknown number of active players. We deal with both splittable and unsplittable models. We prove the existence and uniqueness of a symmetric safety-level equilibrium in such games and show that in many cases every player benefits from the common ignorance about the number of players. Furthermore, we prove new theorems on ex...

متن کامل

Bottleneck Games in Noncooperative Networks

We consider routing games where the performance of each user is dictated by the worst (bottleneck) element it employs. We are given a network, finitely many (selfish) users, each associated with a positive flow demand, and a load-dependent performance function for each network element. We first prove the existence of a Nash equilibrium, considering two routing scenarios, namely when a user can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008